ar X iv : 0 90 6 . 12 38 v 3 [ m at h . PR ] 2 6 Ju n 20 09 A RECURSIVE PROOF OF ALDOUS ’ SPECTRAL GAP CONJECTURE

نویسندگان

  • PIETRO CAPUTO
  • THOMAS M. LIGGETT
  • THOMAS RICHTHAMMER
چکیده

Aldous' spectral gap conjecture asserts that on any graph the random walk process and the random transposition (or interchange) process have the same spectral gap. We prove the conjecture using a recursive strategy. The approach is a natural extension of the method already used to prove the validity of the conjecture on trees. The novelty is an idea based on electric network reduction, which reduces the problem to the proof of an explicit inequality for a random transposition operator involving both positive and negative rates. The proof of the latter inequality uses suitable coset decompositions of the associated matrices on permutations. Aldous' conjecture concerns the spectral gap, a quantity that plays an important role in the analysis of the convergence to equilibrium of reversible Markov chains. We begin by reviewing some well known facts about Markov chains and their spectral gaps. For details we refer to [2]. 1.1. Finite state, continuous time Markov chains. Let us consider a continuous time Markov chain Z = (Z t) t 0 with finite state space S and transition rates (q i,j : i = j ∈ S) such that q i,j 0. We will always assume that the Markov chain is irreducible and satisfies q i,j = q j,i for all i = j. Such a Markov chain is reversible with respect to the uniform distribution ν on S, which is the unique stationary distribution of the chain. The infin-itesimal generator L of the Markov chain is defined by Lg(i) = j∈S q i,j (g(j) − g(i)) ,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 6 . 45 41 v 1 [ m at h . PR ] 2 4 Ju n 20 09 Covariance function of vector self - similar process ∗

The paper obtains the general form of the cross-covariance function of vector fractional Brownian motion with correlated components having different self-similarity indices.

متن کامل

ar X iv : 0 70 6 . 37 38 v 1 [ m at h . A G ] 2 6 Ju n 20 07 EQUIVARIANT LITTLEWOOD - RICHARDSON TABLEAUX

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

ar X iv : 0 90 6 . 48 64 v 1 [ m at h . G T ] 2 6 Ju n 20 09 ZZ 2 – Thurston Norm and Complexity of 3 – Manifolds

A new lower bound on the complexity of a 3–manifold is given using the ZZ2 –Thurston norm. This bound is shown to be sharp, and the minimal triangulations realising it are characterised using normal surfaces consisting entirely of quadrilateral discs. AMS Classification 57M25, 57N10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009